Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Cosmic-ray physics in the GeV-to-TeV energy range has entered a precision era thanks to recent data from space-based experiments. However, the poor knowledge of nuclear reactions, in particular for the production of antimatter and secondary nuclei, limits the information that can be extracted from these data, such as source properties, transport in the Galaxy and indirect searches for particle dark matter. The Cross-Section for Cosmic Rays at CERN workshop series has addressed the challenges encountered in the interpretation of high-precision cosmic-ray data, with the goal of strengthening emergent synergies and taking advantage of the complementarity and know-how in different communities, from theoretical and experimental astroparticle physics to high-energy and nuclear physics. In this paper, we present the outcomes of the third edition of the workshop that took place in 2024. We present the current state of cosmic-ray experiments and their perspectives, and provide a detailed road map to close the most urgent gaps in cross-section data, in order to efficiently progress on many open physics cases, which are motivated in the paper. Finally, with the aim of being as exhaustive as possible, this report touches several other fields -- such as cosmogenic studies, space radiation protection and hadrontherapy -- where overlapping and specific new cross-section measurements, as well as nuclear code improvement and benchmarking efforts, are also needed. We also briefly highlight further synergies between astroparticle and high-energy physics on the question of cross-sections.more » « lessFree, publicly-accessible full text available March 20, 2026
- 
            We present the first measurement of cosmic-ray fluxes of and isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on and nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the and fluxes exhibit nearly identical time variations and, above , the time variations of , , He, Be, B, C, N, and O fluxes are identical. Above , we find an identical rigidity dependence of the and fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the flux. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV. The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing rigidity. In particular, below 3.64 GV the Li, Be, and B fluxes, and below 2.15 GV the C, N, and O fluxes, are significantly less affected by solar modulation than the He flux. We observe that these differences in solar modulation are linearly correlated with the differences in the spectral indices of the cosmic nuclei fluxes. This shows, in a model-independent way, that solar modulation of galactic cosmic nuclei depends on their spectral shape. In addition, solar modulation differences due to nuclei velocity dependence on the mass-to-charge ratio ( ) are not observed. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron ( ) flux are presented. The measurements are based on nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the flux exhibits nearly identical time variations with the , , and fluxes. Above 4.5 GV, the flux ratio is time independent and its rigidity dependence is well described by a single power law with . This is in contrast with the flux ratio for which we find . Above we find a nearly identical rigidity dependence of the and fluxes with a flux ratio of . These unexpected observations indicate that cosmic deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation, we obtain the primary component of the flux equal to of the flux and the secondary component of the flux equal to of the flux. Published by the American Physical Society2024more » « less
- 
            null (Ed.)The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity, and demands for redirection of scientific efforts and criteria to organized research projects. The international Covid19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in Covid19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalogue of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR-chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope labeled form.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
